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Abstract

Forecasting the grape yield of vineyards is of
critical importance in the wine industry, as it
allows grape growers to more accurately and
confidently invests in capital equipment, ne-
gotiate pricing, schedule labour and develop
marketing strategies. Currently, industry stan-
dard forecasts are generated by manual sam-
pling of bunch weights, grape size, grape numn-
bers and seasonal predictions which takes sig-
nificant time and effort and thus can sample a
very small proportion of the vines. The first
step in automating this procedure is to accu-
rately estimate the weight of fruit on the vine
and thus this paper presents a survey of the au-
tomated image processing methods which have
been applied to this problem. Using manually
harvested bunches photographed in a labora-
tory environment, the contribution of various
bunch parameters to the weight of a bunch was
examined to provide a baseline for the accuracy
of weight calculation methods. Then, several
recent colour classification methods were com-
pared using images of grapes in vivo. The re-
sults showed that a linear regression approach
to bunch weight estimation using berry num-
ber, bunch perimeter, bunch area and esti-
mated bunch volume was accurate to within
5.3%. Results from in vivo colour classifica-
tion showed a weight prediction accuracy of
4.5% on a much smaller dataset, demonstrat-
ing the promise of this approach in achieving
grape grower yield estimation targets.

1 Introduction

Various yield-forecasting approaches are applied in mod-
ern agriculture for optimising market imanagement. Do-
ing so enables farmers to better monitor crop growth and
provides a better overview of and increased control over

the crop supply chain. Generally, these approaches are
divided into two groups based on execution period; one
uses historical records, for example, the rainfall, temper-
ature, duration of sunshine, airborne pollen [Cristofolini
and Gottardini, 2000] and crop yields in 5-20 years, and
another uses a single growth cycle of the crop, analysing
data such as remotely sensed images as well as sampling
the fruit [Wulfsohn et al., 2012] in one growth period.

Through their historical records, agriculture experts
spend a great deal of time and energy to keep a record of
variables such as environmental changes and correspond-
ing annual crop yields. Much existing literature de-
scribes the production-forecasting model based on long-
term records for the purpose of predicting yields.

For grape production, the relationship between
weather and fruitfulness was investigated by Baldwin
[1964] based on 18-year records for the sultana vine. Two
variables assessed in this study are the hours of bright
sunshine and the sum of daily maximum temperatures.
The regression equation obtained in this paper indicated
that yield could be forecasted but there was no evidence
to suggest that other independent variables did not affect
the accuracy of this model.

A 12-year cross validation study of yield-correlation
masking was presented by Kastens and his colleagues
[2005] for yield estimation in a major U.S. grape growing
region. However, the author of this paper indicated that
the data less than 11 years may not be enough to develop
a reliable crop yield model.

Airborne pollen concentration data (for 5 years) was
investigated for establishing a forecasting model for
grape production by Cristofolini and Gottardini [2000].
Although this paper showed that there is a strong corre-
lation between pollen concentration and grape produc-
tion, this model is yet to be rigorous verified.

The obvious disadvantage of yield-forecasting from
historical records in all of these approaches is the amount
of time required and the relatively inaccurate results.
Additionally, these approaches do not provide a direct
and validated trend for crop yield estimation, and need
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further data to be collected for assessment purposes.

With the assistance of AVHRR (Advanced Very High
Resolution Radiometer), remotely sensed images have
been utilised for crop yield prediction, and this method
has become mainstream in terms of regulating farming
activities and maintaining a sustainable environment. A
significant amount of research effort has been focused
on generating fine resolution data from coarse resolu-
tion and then training a prediction model for grape,
olive, corn and wheat yield [Bastiaanssen and Ali, 2003;
Doraiswamy et al., 2005; Bégué et al., 2010]. The in-
formation abstracted from remotely sensed images is
transferred to NDVI (Normalized Difference Vegeta-
tion Index) for exploring the correlation between NDVI
and crop yield [Kastens et al., 2005; Weissteiner and
Kiihbauch, 2005; Cunha et al., 2010]. As well as record-
ing environmental changes, most of these studies depend
on long-term image capture. These studies just offer the
spatial variation of crop yield for arranging harvest and
they are more inclined to assessing the canopy of the
crops, rather than the fruit themselves.

Given this, there is a high level of demand within the
wine industry for the ability to forecast the final yield of
grapevines from producers and consumers, who are both
motivated by substantial economic benefits. Early fore-
casts of grape yield can significantly enhance the accu-
racy of managing labour, storage, delivery, purchases of
related materials and so on. Most forecasting approaches
mentioned in previous paragraph can be performed on
grape yield but none of them are capable of providing a
direct, efficient and valid forecasting model.

As a result, yield-forecasting methods abstracted from
the current growth cycle are widely exploited. Improved
image processing technology provides a promising and ef-
ficient measurement of the amount of grapes before or at
harvest [Dunn and Martin, 2004]. In this paper the rela-
tionship between fruit weight and the ratio of fruit pixels
to total image pixels in 16 images was investigated. The
images used in this study were taken from 1mxlm por-
tions of Cabernet Sauvignon grapevine canopies close to
harvest. Even though these images were captured manu-
ally in ideal conditions (a white screen background, well-
exposed fruit and vertical shoot positioning), the results
of this experiment indicated 85% of the variation in yield
combinations, which does not meet the requirement of
95% from vineyard specifications. These results do how-
ever indicate that automatic yield forecasting based on
image processing of grapevine canopies is technically fea-
sible.

Recently there has been an increase in literature
analysing the application of colour-based image process-
ing techniques to detect the presence of grapes in images.
Separation in the RGB and HSV colour spaces, as well
as intensity [Bjurstrom and Svensson, 2002] was imple-

mented for assessment of grape vigour. The work by
[Reis et al., 2012] is similar to [Bjurstrom and Svensson,
2002], except that it only considered the RGB colour
space with further morphological dilation applied to de-
tect the grape bunches at night. R. Chamelat [2006]
proposed a new method that combines Zernike moments
for shape detection, colour information for recognition
rate, and support vector machines for learning. By this
new method the accuracy and the rate of grape recog-
nition are improved compared with previous work from
others.

However, all these works are heavily dependent upon
the assumption that the grape pixels are sufficiently dis-
tinct from the rest of environment. Finding the clos-
est Mahalanobis distance [Diago et al., 2012] was ap-
plied to classify pixels which belong to grapes, wood,
young leaves or old leaves. This method is more suc-
cessful than [Bjurstrém and Svensson, 2002] and [Reis
et al., 2012], and is capable of correctly identifying the
various classes that were labelled in the image, includ-
ing grapes, branches, trees, grass, and poles. It should
be noted that the success of this approach is reliant on
good selection of the labelled points, and that repeated
labelling and classification is necessary to identify ele-
ments of the images that need to have their own class.
Farias et al. presented an image acquisition and pro-
cessing framework for grape and leaf detection based on
a six-step methodology [Farias et al., 2012]. The per-
formance of this method is more successful than that of
[Diago et al., 2012] since this method accounts for effects
of illumination and automatically clusters the training
data.

It should be noted that within this existing research,
there has been a heavy focus on quantifying the classifi-
cation ability of a variety of methods, but rarely do the
authors of the studies attempt to determine how success-
ful these methods are in actually predicting and forecast-
ing the yields of the vines.

Other work has focused on more geometrically-based
approaches. In terms of automatically calculating the
berry size and counting the number of berries in a non-
destructive way, Rabatel and Guizard [2007] presented
an elliptical contour model to determine the shape of
each berry from its visible edges.

Another automatic berry number and berry size detec-
tion approach was proposed by Nuske et al. [2011]. The
radial symmetry transform of Loy and Zelinsky [2003]
was used for recognizing the potential centres of grape
berries, which were classified based on a descriptor that
takes into account a variety of colour information. This
approach is no longer limited to colour contrast as in
[Dunn and Martin, 2004], but the estimation of weight
still has an error of 9.8%, which is in excess of the wine-
makers target of 5% error. In the following year, Nuske
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Figure 1: A sample image from KH-V dataset

and his research team extended this detection approach
to model and calibrate visual yield estimation in vine-
yards [Nuske et al., 2012]. The potential correlation be-
tween berry number and weight was studied in both pa-
pers. The relationship between the berry size and cluster
volume was investigated but it did not show particularly
promising predictive ability.

Although a national approach to grape estimation in-
struction [Martin and Dunn, 2001] was created in Aus-
tralia, very few grape farmers follow these instructions
rigorously, since all of the sampling work is performed
manually, which is labour-intensive and time-consuming.
This inevitably results in high labour costs, but also
means that inaccuracy in forecasting yield will be caused
by subjective judgment on the part of the workers. Thus,
improving the accuracy of yield forecasting while de-
creasing the labour required would have significant eco-
nomic benefits to the winemakers responsible for a large
amount of litres of wine Australia produces each year.

Given the preceding survey of image processing meth-
ods in viticulture, and in order to investigate their fea-
sibility, this paper examines the contribution of various
visual bunch parameters towards estimating the weight
of the bunch. Visual bunch parammeters for a large num-
ber of images of harvested grapes in laboratory condi-
tions have then been manually calculated and analysed
to provide a baseline with which automated image pro-
cessing methods can be compared. Finally several recent
colour automated classification methods were compared
using images of grapes in vivo.

Subsequent sections proceed as follows: Section 2
presents an evaluation of the performance of various
metrics on manually labelled data sets in predicting the
weights of grape bunches, and Section 3 evaluates the
performance of an automatic classifier using images cap-
tured from on-vine grapes. Section 4 concludes by relat-
ing these results to the expectations of winemakers and

discusses directions for future research.

2 Manual correlation of properties with
weight on ez vivo grapes

Before attempting to perform automatic prediction of
bunch weights, a variety of metrics have been tested on
manually labelled data in ideal conditions in order to
determine which methods have the best performance,
prior to automating them.

A number of experiments have been conducted on im-
ages of ez vivo grape bunches in order to determine which
yield the best results. The grape variety used was Shi-
raz, and bunches were collected just prior to harvest. A
sample image from this data set is shown in Figure 1.

Given the 2-dimensional nature of the images col-
lected, it is difficult to infer the weight of bunches of
grapes, so a variety of metrics have been proposed and
tested:

o Volume—calculated by taking cylindrical sections
along the length of the grape bunches.

o Pixel area—calculated as the total number of visible
grape pixels.

o Perimeter—calculated as the length of the border of
pixels that have been labelled as grapes.

o Berry number—the number of visible grape berries.

o Berry size—calculated as the average radius of in-
dividual berries within bunches.

Manual colour classification and morphological meth-
ods have been applied on 16 images, with each image
containing 18 bunches of grapes (288 bunches in total).
16 images were divided into 2 groups which are labelled
as KH-V (Figure 1) and WV-H. The group of KH-V is
used for filtering the ideal parameter set to segment the
bunch from the background. The ideal parameter set is
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Figure 3: The relationship between of the volume of bunch
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applied to process the images from the group of WV-
H, for each of which the number of visible grape pixels
has been calculated. From this the correlation coeffi-
cient has been calculated to be 0.88 (Figure 2), which is
higher than 0.85 in Dunn’s work [2004]. In addition to
this, the average error between the predicted and actual
weights using K-fold cross-validation (with K = 18) has
been calculated to be 3%.
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Figure 2: The relationship between pixel counts belonging to
cach bunch and the weight of each bunch for WV dataset

In order to mine more information for determining
the correlation of bunch volume, bunch area, bunch
perimeter and berry number with the bunch weights,
18 bunches in a single image of KH-V have been inves-
tigated. The correlations between each of these metrics
and the weights of the grape bunches are illustrated in
the following figures (Figure 3 — Figure 6).

The individual correlations between bunch weight and
four metrics are relatively poor, as demonstrated by their
correlation coefficients of 0.157, 0.681, 0.078 and 0.278
and as shown in Figure 3 — Figure 6. Again, K-fold cross
validation has been applied for calculating the discrep-
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Figure 4: The relationship between of the area of bunch and
the weight of bunch
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Figure 5: The relationship between of the perimeter of each
bunch and the weight of each bunch

ancies in the weight predictions, with average errors of
15.76%, 7.07%, 17.59% and 13.83% respectively.

From this, it is clear that the method that most accu-
rately predicts the yields of the grape bunches yield of
the grape bunches is the munber of visible pixels (bunch
area) with an error of 7.07%. This result is better than
the 9.8% error in [Nuske et al., 2011], but it should be
noted that all these images are captured in ideal con-
ditions, with white background and the grapes ex vivo.
Interestingly, the other metrics such as perimeter, berry
number, and volume have performed quite poorly.

Additionally the relationship between the berry size
of each bunch and bunch weight was assessed, but there
is little to no correlation between these two variables, as
demonstrated in Figure 7. So the related berry num-
bers were multiplied with the average berry size of each
bunch, shown in Figure 8. The correlation coefficient
in this case is 0.7, which is slightly better than the re-
sult from Figure 6, but still not enough for precise yield
prediction.
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Given the relatively ordinary performance of the in-
dividual metrics in isolation, multi-dimensional analysis
has been investigated as a means of improving the re-
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Figure 9: The multiple regression analysis of 16 bunches by
combining bunch volume, bunch area, bunch perimeter and
berry number

sults.

By combining the metrics of volume, bunch area,
bunch perimeter and berry number, two correlation co-
efficients calculated by multiple regression analysis were
obtained: one is 0.7 from the first-order interaction
model while another is 0.99 fromn the complete second-
order model, as illustrated in Figure 9. The error per-
centages of weight prediction were 5.31% (first-order)
and 24.86% (second-order) by K-fold Cross Validation
(K=18). This indicates that the complete second-order
model is overfitting so a first order model is recom-
mended. The results from the first-order prediction are
close to the limit required by grape growers, suggesting
vision processing is feasible at least in ideal conditions.

3 Automated image processing

3.1 Image processing tools to detect image
properties

Given the strong performance from pixel based predic-
tion, the remainder of this paper is focused on experi-
ments to determine the performance of methods of au-
tomatically detecting and classifying pixels in images of
grapes, concluding with an evaluation of the predictive
ability of these methods.

Another area of research that has been focused on
pixel-level classification is skin detection and classifica-
tion [Jones and Rehg, 1999; Phung et al., 2005]. One
of the most successful approaches in this area has been
the use of colour histograms, which we now present in
more detail. This has been demonstrated to be success-
ful in particularly challenging environments where there
are significant similarities between the objects that are
intended to be classified and the surrounding environ-
ment.

These colour histograms are 3-dimensional, with one
dimension per colour channel, and are constructed in
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the following manner: pixels that have been manually
labelled as being either grape or non-grape are accumu-
lated within two separate histograms. These histograins
will contain the number of occurrences of each pixel com-
bination in both the grape and non-grape sets.
Following this, the histogramns are converted into a dis-
crete probability distribution in the following manner:

Nr, g, blgrape

P(r,g, bgrape) = =500

(1)
Nr, g, bl—grape
P(r, g, bl~grape) = —I— 2L gl,.:;e -

At this stage, we have the conditional probability of a
given pixel being a grape as well as the conditional prob-
ability of it not being a grape. Using this information,
we can implement a Bayesian classifier for grape pixels
based on a likelihood threshold, as was done in [Jones
and Rehg, 1999; Phung et al., 2005], where a pixel is
classified as being a grape if:

P(r, g,b|~grape)

Here « is a threshold that can be used to vary the true
positive and false positive rates of the classifier.

This histogram inherently gives the classifier the abil-
ity to be able to classify pixels down to the size of the bins
used in the histogram, which means that this approach
does not face the difficulties of the aforementioned alter-
natives in terms of relying on the ability to correctly seg-
ment the classification space into grapes and non-grapes.

3.2 Prediction of weight using automatic
classification using in-vivo dataset

In order to experimentally verify the performance of the
classifier, images taken from the aforementioned data set
used in [Dunn and Martin, 2004] have been manually
labelled for the purposes of training and validating the
performance of the colour histograms in predicting the
yields of the grapevines.

The images below illustrate an example of the classifi-
cation that results from using the optimal combination of
parameters for both colour histograms (to be discussed
shortly), colour thresholding in the RGB colour space,
and a combination of fuzzy-clustering and SVM [Farias
et al., 2012]. Here, pixels that have been classified as
grapes are indicated in red, with the manually labelled
grapes shown in black.

Figure 10 shows that the colour histogram classifier
(b) performs very well in terms of detecting bunches
of grapes present in the image, as it successfully de-
tects almost all of the grape pixels, whilst maintaining
a small number of false positives in a challenging envi-
ronment where there are similar coloured objects such

Figure 10: (a) Original image of in-vivo grapes. (b) Results
of classification using colour histogram. (c) Results of classi-
fication using RGB thresholding. (d) Results of classification
using fuzzy clustering and SVM.

as branches and posts. We observe relatively poor per-
formance when using a threshold-based approach (c) or
fuzzy clustering method (d), noting that although many
of the grapes have been correctly identified, there is a
significantly large amount of false positives, particularly
on the branches. This is due to the fact that the branches
are of a relatively similar colour to the grapes, particu-
larly when compared with other objects in the image.

There are two important variables that dictate the
performance of the colour histograms; the colour space
used, and the number of bins in the histogram. The
colour spaces that have been tested experimentally are
RGB, HSV, and YCrCb. The histogram bin sizes that
have been tested are 16, 32, 64, 128, and 256.

Figure 11 illustrates the ROC curves for these colour
spaces as the size of the histogram bins vary, as well as
the best responses from within each colour space.

These results support the observational evidence pre-
sented in the Figure 11. With the optimal combination
of parameters, a true positive rate of 95% is achieved,
with a false positive rate of only 2%. This is in contrast
with the other two methods tested; RGB thresholding
yields a true positive rate of 87%, with a false positive
rate of 5%, whilst fuzzy clustering and SVM results in
a true positive rate of 97%, but a false positive rate of
16%.

From this, we can see that a relatively small number of
bins has the best response, and that the HSV and YCrCb
colour spaces have the best results. This is similar to the
results from [Jones and Rehg, 1999], where an increase in
bin size improved performance, but different to [Phung
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et al., 2005], where optimal performance was achieved
with the smallest bin size. [Phung et al., 2005] suggests
that this is possibly due to the fact that the training
sets used in this work and in [Jones and Rehg, 1999] are
comparatively small, resulting in poor results for a large
number of bins due to the fact that much of the colour
space has not been well represented.

Note that another advantage of using a smaller num-
ber of bins is the reduction in memory requirements due
to not having to store the larger histogramns.

As discussed above, we are most interested in the cor-
relation between the number of grape pixels detected
in an image and the weights of the bunches of grapes
present in that immage. In this regard, the results of our
preliminary analysis are very promising. When using
the classifier discussed above, we obtained the results
shown in Figure 12 for the correlation between the num-
ber of automatically classified pixels and the weights of
the grape bunches.

Here we have demonstrated that the number of de-

tected pixels using the proposed method of pixel clas-
sification is able to account for more than 93% of the
variation in the weights of the grape bunches. This is up
from 85% that was achieved in [Dunn and Martin, 2004]
using the same data set. This improvement is due to the
fact that the method used in [Dunn and Martin, 2004]
is based on applying thresholds across the RGB colour
space. It is interesting to note that the performance of
the automatic classification is very slightly better than
that of the manual classification, which is most likely
due to the fact that the automatic classification has been
conducted on a limited data set.

In order to further quantify the predictive power of
the proposed approach, the average error between the
predicted and actual weights has been calculated using
leave-one-out cross-validation (ignoring images where
there are only very small amounts of grapes due to ex-
cessive relative errors) to be 4.46%. This relates well to
the winemakers target of 5% error and shows that there
is indeed great potential for automatic grape classifica-
tion that is capable of accurately predicting the yields of
grapevines.

4 Conclusion

This preliminary analysis suggests that there is great
potential for automatic image processing to be used to
improve the accuracy of grape vine yield estimates over
existing manual methods of forecasting, with consequent
economic benefits.

The results showed that a linear regression approach
to bunch weight estimation using berry number, bunch
perimeter, bunch area and estimated bunch volume was
accurate to within 5.3% in ideal conditions whereas by
only using berry number the accuracy decreased to 7.1%.
Results from in vivo colour classification showed a weight
prediction accuracy of 4.5%, however this made use of a
very limited dataset and further field tests are planned
for the current growing season.

Robust pixel-classification inethods have also been
demonstrated to be more accurate than colour thresh-
olding, as well as increasing the ability to estimnate the
weights of grape bunches. Currently only a limited num-
ber of image processing and pixel classification method-
ologies have been surveyed and this will be expanded in
future work. The sensitivity of classification to variation
in the colour space and bin size in different environmen-
tal conditions will also be investigated.

One of the critical factors that will dictate the long-
term success of this research will be the ability of the
methods proposed and tested to be implemented in a
real-world system. All bunches analysed in this pa-
per have been post-veraison and close to harvest when
manual sampling is currently used for yield estimation.
Going forward, it is planned that entire vineyards will
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be surveyed and images collected for use in the grape
classification. Currently, only a very small percentage
(<0.2%) of vines area very small percentage (<0.2%)
of vines is sampled using manual methods. By using a
much larger sample size, it is anticipated that much more
accurate yield estimates will be possible.
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